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Abstract 
 

In geostatistics, the detection of anomalous observations has a particular importance because of the changes they can 

create in environmental and geological patterns. Few methods for detecting such observations in univariate data have been proposed 

for the spatial case, namely sample influence function (SIF), kriging, Intrinsic Random Functions (IRF), and geostatistical 

functional data. This article reviews the main outlier detection procedures in the context of geostatistics, and due to the absence of 

a numerical comparison between them, this article obtained the cut-off points of these methods for three different variogram 

models, and evaluated their performance via a simulation study. The results show that for all detection methods and the three 

considered models, there is an inverse relationship between the level of contamination and power of performance. In addition, the 

SIF for the cubic variogram model outperforms the exponential and Matérn. Because of the peculiarities of the Gaza Strip, as 

regards Palestine water condition, and for illustration purposes, we consider real groundwater level data in the Gaza Coastal 

Aquifer, where a set of possible outliers were identified. 
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1. Introduction  
 

 Geostatistics is a branch of statistics that describes 

the spatial continuity of natural phenomena (Isaaks, & 

Srivastava, 1989). It collects theories and numerical techniques 

to deal with the characterization of spatial attributes, by 

employing primarily random models in a similar way as 

temporal data is characterized in time series analysis (Olea, 

2012).  

Geostatistics has many applications in different 

fields, for instance in modeling groundwater management 

(Ahmed, 2007) or in COVID-19 prevalence maps (Azevedo, 

Pereira, Ribeiro, & Soares, 2020), analyses of the spatial 

patterns of physical or chemical attributes of soil (Sun et al., 

2022), or the estimation of contaminant levels in environment 

(Gilbert, & Simpson, 1985). 

 
The unusual readings known as outliers or anomalous 

data on groundwater level may lead to serious inferential 

statistical problems, including the misspecification of the best 

model as well as poor prediction of further readings. Outlier in 

the context of geostatistics may be defined as any features in 

locations that are abnormally isolated compared to the 

neighboring values.  

Geostatistical data analysis is sensitive to outliers and 

there are only few proposed outlier detection procedures, based 

on certain characteristics of geostatistical methods as reviewed 

in Section 2. 

Nirel Mugglestone and Barnett (1998) suggested a 

method for eliminating spatial data that involves detecting 

outliers first, then replacing them with values calculated from 

the remaining data. Yoo and Um (1999) developed two 

alternative strategies for detecting spatial outliers: the 

distributional inference method and the deletion method. Kim 

and Jung (2005) proposed the outlier detection method using 

multivariate regression based on the sign of the influence 

function.  Hayashi, Ishioka, Ueda, Suito, and Kurihara   (2013)
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proposed a new framework of statistical sensitivity analysis for 

linear discriminant analysis. Kim (2014) discussed an 

estimation approach based on maximum likelihood method, 

and detected outliers with the sample influence function. 

The Gaza Strip is a narrow area lying along the south-

eastern coast of the Mediterranean Sea in the southwestern part 

of Palestine between 34° 2′ and 34° 25′ east longitudes and 31° 

16′ and 31° 45′ north latitudes. Gaza Strip is especially sensitive 

to the effects of climate change due to its dense population, dry 

environment, and water scarcity challenges. Furthermore, the 

coastal aquifer is the primary supply of freshwater. According 

to recent estimates, 97% of the water in the Gaza Strip's Coastal 

Aquifer is already unsuitable for human use, and the damage to 

the Aquifer is expected to be permanent if prompt action is not 

taken (United Nations Children’s Fund [UNICEF], 2018).  

There hasn't been any research comparing the 

performance of outlier detection methods in geostatistical data. 

Thus, this article investigates and compares the univariate 

outlier detection procedures via an extensive simulation study 

and applies them to the groundwater level data in the Gaza 

coastal aquifer.  

The rest of this article is organized as follows. 

Section 2 presents outlier detection methods for geostatistical 

data. Section 3 obtains the cut-off points for the studied 

methods and compares their performance via an extensive 

simulation study. Section 4 applies outlier detection methods to 

real groundwater level data for the Gaza Coastal Aquifer. 

 

2. Outlier Detection Methods 
        

The basic components of geostatistics are variogram 

analysis, Kriging, and map interpolation, as explained in 

(Abuzaid, 2018). 

Variogram is a measure of spatial correlation, or 

alternatively the variation between successive points, and it is 

obtained as follows. 

 
2 21 1

( ) ( ) ( ) ( ) ( )
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h E Z x h Z x Var Z x h Z x                     
, 

where ( )Z x  and ( )Z x h are random variables, x  and 

x h  are the spatial positions separated by a vector h . The 

( )h   depends only on the separation vector h  but not on the 

location x . 

Kriging is a tool of spatial prediction to estimate 

unknown local values of variables that are distributed in a space 

of finite dimension. It attempts to model the variability in the 

data as a function through the variogram (Isah, 2009). In 

Kriging each observation is given a weight according to the 

direction and distance between that point and the point to be 

estimated (Vieira., Hartfield, Nielsen, & Biggar, 1982).  

There are six types of kriging used in geostatistical analysis, 

namely: 

Ordinary Kriging (OK): The most used of kriging 

types. It assumes that the expected value is an unknown 

constant. �̂�(�⃗�0) = ∑ 𝜆𝑖𝑍(�⃗�𝑖)
𝑛

𝑖=1
,  where 𝑍(�⃗�𝑖)  is the 

measured value at 𝑖th location, 𝜆𝑖 are unknown weights for the 

measured values by location, �⃗�0 is predication location, and n 

is the number of measured values. 

Simple Kriging (SK): This is the simple type, where 

the mean is known and constant over the domain, and the 

weights are not equal to 1, given by 
 

 �̂�(�⃗�0) = 𝜇0 + ∑ 𝜆𝑖(𝑍(�⃗�𝑖) − 𝜇0)
𝑛

𝑖=1
,  

where ∑ 𝜆𝑖
𝑛
𝑖=1  is a constant 𝑐. 

Universal Kriging (UK): This is different from the 

suppositions of ordinary and simple kriging, as the mean 𝜇(�⃗�) 

is a linear combination of known functions at �⃗�. It is defined as 

follows 𝜇(�⃗�) = ∑ 𝛽𝑗𝑓𝑗(�⃗�)
𝑝

𝑗=1
 , where 𝛽𝑗  are unknown 

coefficients of linear combination, 𝑓𝑗(�⃗�) is a basic function of 

spatial coordinates that describes the drift, and 𝑝 is the number 

of functions used in modeling the drift. 

Block Kriging (BK): This is the mother of all forms 

of kriging for the characterization of a single attribute. It is 

reformulated of ordering kriging equations to estimate an 

average value 𝑍𝑉(�⃗�𝑜) of the variable 𝑍 on a block of area 

𝑣 around �⃗�0, defined by  
 

𝑍𝑣(�⃗�0) =
1

| 𝑣|
∫ 𝑍(�⃗�)

𝑣
  𝑑𝑥 .                                                 

 

Co-Kriging (CK): This is basically a generalization 

of kriging. Co-kriging is a multivariate estimation procedure 

that contracts with two or more attributes within the same field. 

The best-unbiased predictor of
 
𝑍(�⃗�0) is estimated as a linear 

combination of both the variables of interest 𝑍(�⃗�)  and the 

secondary variable 𝑌(�⃗�)  and is given by 
 

�̂�(�⃗�0) = ∑ 𝜆𝑖𝑍(�⃗�𝑖

𝑛

𝑖=1

) + ∑ 𝜔𝑗𝑌

𝑚

𝑗=1

(�⃗�𝑗) , 

where 𝜆𝑖 , 𝜔𝑗  are the weights and 𝑛, 𝑚 are the numbers of a 

random variables. 

Disjunctive Kriging (DK): It is the most complex 

way that makes it unappealing for most interested in this field. 

It is used to estimate the value of any function of the variable; 

however disjunctive kriging provides a solution space larger 

than other kriging techniques that only rely on non-linear 

combinations of the data.  

For further characteristics of the previous types of 

kriging (Lichtenstern, 2013; Olea, 2012).  

  Spatial interpolation is the process of predicting 

unknown points based on a set of points with known values. 

There are many interpolation methods, where the most widely 

used interpolation method is Inverse Distance Weighting 

(IDW) which uses the values at known points during estimation 

of an unknown point, and the values known near the estimated 

site get larger weights than those far away: the weights will 

decrease with distance. Another method is the Triangulated 

Irregular Networks (TIN), which is one way to represent three-

dimensional data for map interpolation. It depends on the 

point’s location and the non-spatial data value necessary to 

create the three-dimensional coordinate surface and then 

connects them with lines that form triangles. The height can be 

calculated in any area and produces a network from triangles 

with irregular forms. For further explanation (Chang, 2006). 

This section reviews four univariate geostatistical 

methods for detecting outliers, namely sample influence 

functions, kriging, intrinsic random functions, and 

geostatistical functional data. 



1436 A. H. Abuzaid et al. / Songklanakarin J. Sci. Technol. 44 (6), 1434-1441, 2022 

 

2.1 Influence functions  
 

An influence function is the effect of a specific 

observation on the estimator for an uncontaminated 

distribution. The Theoretical Influence Function (TIF) is 

defined as follows (Hampel, 1974) 

 

 𝑇𝐼𝐹(𝑍(𝑥) , 𝐹)

= lim
𝜀→0

𝑇((1 − 휀)𝐹 + 휀𝛿𝑍(𝑥)) − 𝑇(𝐹)

휀
, 

(2.1) 

 

where 𝑇(𝐹)  is a parameter which can be considered as a 

functional of the cumulative distribution function F of random 

variables 𝑍(𝑥)  and 𝛿𝑍(𝑥) is the cumulative distribution 

function. The Empirical Influence Function (EIF) is obtained 

by replacing cumulative distribution function 𝐹 by 𝐹 ̂in (2.1). 

The Sample Influence Function (SIF) is obtained by deleting 

limit and setting 휀 = −
1

𝑛−1
, and it is expressed as: 

 

 𝑆𝐼𝐹(𝑍(𝑥𝑖) , �̂�) = (𝑛 − 1 )[�̂�𝑖 − �̂�] . (2.2) 

 
SIF is used to detect outliers based on their effect on 

the maximum likelihood estimate of the variogram model as 

follows (Kim, 2014) 

 

 
𝑆𝐼𝐹(𝐷𝑒 , �̂�) =

𝑛 − 𝑡

𝑡
 (�̂�𝐷𝑒 − �̂�) , (2.3) 

 

where 𝑛 is the size of full data, t is the number of data in the 

subset to be evaluated (De), �̂�   and  �̂�𝐷𝑒  are the values of 

maximum log-likelihood of the considered variogram model 

for full data and reduced data, respectively. Alternatively, SIF 

could be used to detect outliers based on Akaike Information 

Criterion 𝐴𝐼𝐶 = 2(𝑛 − �̂�) , and is given by   

 

 
𝑆𝐼𝐹(𝐷𝑒, 𝐴𝐼𝐶) = −

𝑛 − 𝑡

𝑡
(𝐴𝐼𝐶𝐷𝑒 − 𝐴𝐼𝐶) . (2.4) 

 

where 𝐴𝐼𝐶𝐷𝑒  is the 𝐴𝐼𝐶  for the reduced sample. The largest 

absolute value of the SIF indicates possibility of outliers.  

 

2.2 Kriging    
 

Based on kriging, we can obtain the absolute value of 

the difference between the observed and the expected values, in 

relation to the variance of the estimation. This criterion is called 

the Absolute Normalized Deviation (AND), and formulated by: 

 

 
AND =

�̂�(𝑥𝑖) − 𝑍(𝑥𝑖)

𝜎𝑖
 , (2.5) 

 

where 𝜎𝑖 is the standard deviation of the estimation error. 

If AND 's value for a given point is larger than three, 

then this point is an outlier. In addition AND is approximately 

normally distributed with a mean of zero and a variance of one 

(Cooper, & Istok, 1988). In order to apply plausibility analysis 

to structured data, it is necessary to calculate kriging variance. 

After selecting the type of variogram model and determining its 

parameters, we need to carry out validation for all data and test 

if the AND distribution is similar to the standard normal 

distribution N(0, 1). In that case, if the value of AND is higher 

than its maximum allowable value, then the point is an outlier.  

 

2.3 Intrinsic random functions 
           

The intrinsic random function (IRF) was developed 

as an alternative to universal kriging (Matheron, 1973). The 

IRF assumes that generalized increments of the observed 

random process lead to a second-order stationary process, while 

the universal kriging requires only that the mean structure of 

the observed process be linear, and between them there is great 

overlap, i.e., any polynomial universal kriging model with a 

stationary covariance function is an IRF (Delfiner, 1976). 

The generalized polynomial covariances for IRF- K are defined 

as follows (Matheron, 1973): 
 

 

𝐾(ℎ𝑖𝑗) = 𝑐𝛿(ℎ) + ∑ (−1)𝑚+1𝑎𝑚ℎ
2𝑚+1

𝑘

𝑚=1

 (2.6) 

 

where 𝛿(ℎ) = 1  if ℎ = 0  and 𝛿(ℎ) = 0  elsewhere. The 

coefficients must satisfy some additional conditions, 

𝑐 ≥ 0, 𝑎0 ≥ 0, 𝑎2 ≥ 0 and 𝑎1 ≥ 10√𝑎0𝑎2/3. This can be done 

in a variety of ways, including the weighted regression 

techniques (Delfiner, 1976), and the minimum norm estimator 

(Kitanidis, 1983). 

          Arrangements of IRF coefficients yielding the 

smallest deviations of AND features from the standard normal 

distribution. If the raw data cannot reach the acceptable value 

of the variance of AND, the observation point with the highest 

value of AND is characterized as an outlier and momentarily 

excluded from the results. 

Due to the less straightforward theory of the IRF it is 

less commonly used than the AND kriging method (Bárdossy, 

& Kundzewicz, 1990). 

 

2.4 Functional data 
 

The functional data analysis (FDA) is a modern 

branch of statistics that analyzes data by providing information 

about curves, surfaces or anything else varying over a 

continuum. It is used to enhance, analyze, model and predict 

time series data (Giraldo, et al. 2011). 

The spatial functional process is denoted by:  

 

 𝑍𝑥𝑖
(𝑡𝑗) = 𝜇𝑥𝑖

(𝑡𝑗) + 휀𝑥𝑗
(𝑡𝑗), (2.7) 

 

where 휀𝑥𝑗
(𝑡𝑗)  are residuals with independent zero mean, and 

𝜇𝑥𝑖
(𝑡𝑗)  is the mean function which summarizes the main 

structure of 𝑍𝑥𝑖
. 

𝑍𝑥𝑖
(𝑡𝑗) is assumed to be second-order stationary and 

isotropic (i.e., the mean and variance functions are constant and 

the covariance depends only on the distance between points). 

Moreover, consider that for every fixed 𝑡0 ∈ [𝑎, 𝑏], the finite-

dimensional section 𝑍𝑥𝑖
(𝑡0) is a random function defined on 

some probability space.  

         The outliers in geostatistical functional data are 

defined as the curves spatial locations that are not compatible 

with their neighborhoods, which can be a lonely outlier or a 

group of outliers (Febrero, Galeano, & González‐Manteiga, 

2008). 



A. H. Abuzaid et al. / Songklanakarin J. Sci. Technol. 44 (6), 1434-1441, 2022  1437 

 

Within the functional context, many depth functions 

are proposed, including the modal depth dependent on the 

definition of mode. The modal depth of the spatial function is 

defined as the curve that achieves the maximum value as 

follows (Cuevas, Febrero, & Fraiman, 2007): 
 

 

𝑆𝑀𝐷(𝑍𝑥𝑖
(𝑡)) = ∑ 𝐾 (

‖𝑍𝑥𝑖
− 𝑍𝑥𝑗

‖
𝑤

𝑏
)

𝑛

𝑗=1

 (2.8) 

 

where 𝐾 : ℝ+ → ℝ+ is a kernel function, b is a bandwidth 

parameter, and ‖𝑍𝑥𝑖
− 𝑍𝑥𝑗

‖
𝑊

 is the distance between the geo-

referenced curves weighted by the spatial variation between the 

sites, and represented by: 

 

 𝑑𝑤(𝑍𝑥𝑖
, 𝑍𝑥𝑗) = 𝑑(𝑍𝑥𝑖

, 𝑍𝑥𝑗) 𝛾𝑖𝑗(ℎ) (2.9) 

 

where  𝑑(𝑍𝑥𝑖
, 𝑍𝑥𝑗

) = √∫ 𝑍𝑥𝑖
(𝑡) − 𝑍𝑥𝑗

(𝑡))2𝑑𝑡
𝑇

  is the distance 

between the curves without the spatial component. In general, 

the outliers of the spatial functional structure have 

𝑃𝑟(𝑆𝑀𝐷(𝑍𝑥𝑖
(𝑡)) < 𝛼) = 0.01. The proportion of outliers then 

equals 1% (Romano and Mateu, 2013). 

Since the theoretical distribution of SMD is not 

known, its empirical distribution is used to estimate the value 

of 𝛼 based on bootstrap of the curves in the original set with a 

probability proportional to depth (Febrero, Galeano, & 

González‐Manteiga, 2008). 

No comparison study has been conducted to compare 

the performance of these methods. Since the nature of the SMD 

is different from the other detection methods, the following 

section will obtain the cut-off points for the first three outlier 

detection methods, namely SIF, AND and IRF, and compare 

their performance via a simulation. 
 

3. Simulation Study 
 

In order to compare the performance of detection 

methods, this section focuses on obtaining cut-off points for the 

three outlier detection methods SIF, AND and IRF in 

geostatistical data, and investigates their performances via a 

simulation study. 

All required subroutines have been written by using 

(sp, gstat, ggplot2, scales and geoR) packages in R statistical 

environment, and are available upon request from the authors. 
 

3.1 The cut-off points for geostatistical methods 

 

The cut-off points for the three geostatistical 

methods, namely sample influence functions (SIF), kriging 

AND, and intrinsic random functions (IRF), are determined for 

three popular variogram models: exponential, cubic and Matérn 

variogram models. An unconditional simulation is designed for 

7×7, 10×10, 15 ×15 and 20×20 sizes of grids without 

contamination of process, and with mean of W=3. 

Under the null hypothesis the ith point is a consistent 

point (𝐻0:  There is no outlier in the sample) while in the 

alternative hypothesis the ith point is an outlier (𝐻1: The ith 

point is outlier). For each combination of sample size n and 

variogram model, the process is repeated 1000 times to ensure 

the convergence of cut-off points. Then for each detection 

method the maximum value of statistics SIF, AND, and RIF are 

obtained, and 95% percentile of all obtained maximum value 

are determined to be considered as the cut-off (i.e. critical 

value) for the test statistic for every outlier detection. The cut-

off points of the three considered outlier detection methods 

using exponential, cubic and Matérn variogram models are 

given in Table 1. 

The cut-off points show an increase with sample size. 

Moreover, the SIF has the largest cut-off points among the 

detection methods, while the cubic variogram model has the 

largest values.  

The following subsection investigates the 

performance of the three considered outlier-detection methods 

in geostatistical analysis. 

 
3.2 Power of performance 

          
The power of performance of discordancy tests can 

be evaluated by different methods (Barnett, & Lewis, 1994). 

The most common is the power of test P1 = 1-β, where β is the 

probability of Type-II error of the test. 

Without loss of generality, the same generation 

approach as in the previous subsection is followed with respect 

to size, outlier-detection methods, and variogram models with 

mean W=3. For evaluating the performance, four levels of 

contamination (0%, 10%, 30% and 50%) are considered by 

generating the contaminated points from the same settings of 

the original data except that the mean was shifted to be 𝑊𝐶  = 8.    

  
 
Table 1. The cut-off points of the geostatistical methods 

 

Method Model 
Size 

7×7 10×10 15×15 20×20 
      

SIF Exp. 528.952 1175.502 3244.319 6110 

Cub. 665.602 1723.966 5806.276 12957.555 
Mat. 524.898 1225.874 3135.930 6243.293 

AND Exp. 6.536 8.391 13.453 23.489 

Cub. 23.224 70.643 103.429 186.734 
Mat. 6.740 12.664 19.311 23.694 

IRF Exp. 12.137 16.114 19.054 24.967 

Cub. 19.633 28.401 30.594 41.821 
Mat. 12.719 16.285 19.089 24.058 
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Then test statistics were obtained for each 

contaminated dataset, and compared with the associated cut-off 

point. The power of performances against the degrees of 

contamination are given in Table 2. 

The performance of detection methods for small 

samples (7×7) is wobbly with respect to variogram models, 

contamination level or the detection methods. For the larger 

sample (10×10) and onwards the following behaviors are 

noticed. 

For all detection methods and the three considered 

models, there is an inverse relationship between the level of 

contamination and power of performance. 

AND kriging method has almost a constant 

performance for the three considered variogram models, with 

the weakest performance compared to the SIF and IRF. The 

performance of SIF for the cubic variogram model outperforms 

the exponential and Matérn. 

 

4. Application to Groundwater Level Data in the  

    Gaza Coastal Aquifer        
 

The area of the Gaza Strip is about 365 km2 with a 

length of 45 km and a width between 7 and 14 km (Aish, Ayesh, 

& Al-Najar, 2021). The Strip mainly is divided into five 

governorates: North Gaza, Gaza, Middle Governorate, 

Khanyounis and Rafah. The population density in the Gaza 

Strip is considered to be the highest in the world, with a 

population of more than 2 million people and a growth rate of 

about 3.5% annually (Palestinian Central Bureau of Statistics, 

[PCBS], 2020). 

The Gaza aquifer is a major component of the water 

resources in the area. It is naturally recharged by precipitation 

and additional recharge occurs by irrigation return flow.  

Pumping wells (both municipal and agricultural wells) are the 

main internal hydrologic stresses acting on the Gaza aquifer 

system. According to (Palestinian Water Authority [PWA], 

2010), about 4600 water wells across the Gaza Strip have been 

dug over the recent decades to meet both domestic and 

agricultural demands. The water consumption has increased 

substantially over the past years; the groundwater abstraction is 

about 187 M 𝑚3  year for the agricultural, industrial and 

domestic uses (PWA, 2015). 

The water level data for the year 2019 were collected 

from Palestinian Water Authority (PWA), department of 

Hydrology. Groundwater level is monitored quarterly by 

(PWA) monitoring team, at 86 monitoring wells distributed 

spatially and covering the whole Gaza Strip area, as shown in 

Figure 1.  
 

 
 

Figure 1. Location map and areal distribution of observation wells in 
the Gaza Strip 

 

Table 2. The power of performance 

 

Method Model 
Contamination level (7×7) Contamination level (10×10) 

10% 30% 50% 10% 30% 50% 
        

SIF Exp. 90.20% 0.0% 0.0% 38.19% 0% 0% 

 Cub. 91.27% 80.48% 82.27% 97.45% 97.39% 97.81% 
 Mat. 88.80% 0.0% 0.0% 29.14% 0% 0% 

AND Exp. 37.10% 32.33% 32.27% 18.56% 14.04% 14.18% 

 Cub. 35.73% 32.33% 32.27% 15.91% 14.03% 14.19% 
 Mat. 36.47% 32.32 % 32.27% 14.97% 14.03% 14.18% 

IRF Exp. 64.1% 57.57% 44.69% 86.12% 70.05% 51.63% 

 Cub. 75.23% 65.38% 54.77% 83.46% 65.84% 50.63% 
 Mat. 63.95% 56.78% 43.43 86.01% 69.79% 51.29% 
        

Method Model 
Contamination level (15×15) Contamination level (20×20) 

10% 30% 50% 10% 30% 50% 
        

SIF Exp. 70.78% 66.85% 57.24% 63.14% 60.25% 56.35% 

 Cub. 73.68% 69.85% 60.15% 65.62% 62.95% 58.42% 

 Mat. 69.54% 63.24% 52.84% 62.24% 58.64% 50.74% 
AND Exp. 35.07% 34.45% 34.74% 15.43% 15.56% 15.48% 

 Cub. 34.87% 34.45% 34.74% 15.50% 15.56% 15.48% 

 Mat. 34.95% 34.52% 34.68% 15.43% 15.56% 15.48% 
IRF Exp. 59.95% 43.85% 28.78% 80.82% 59.16% 41.56% 

 Cub. 67.06% 51.66% 40.42% 73.48% 55.04% 40.35% 

 Mat. 59.92% 43.77% 28.71% 82.75% 61.22% 43.26% 
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4.1 Data description 
 

There are 86 observations in groundwater level data 

for the Gaza Coastal Aquifer. The values range between -20 m 

and 20.14 m, with mean and median -1.6711 and -2.6585 

respectively, where the minus sign (-) indicates that the 

groundwater level is below the mean sea level (MSL). The box-

plot in Figure 2 shows a set of outliers. 

The groundwater level >5 meter above sea level is 

found in the eastern part of Rafah Governorate. The aquifer in 

that area is then a few meters, and not suitable for wells in the 

area. The PWA recorder maybe does not give attention to these 

observations and the wells have error in measurements 

assumptions, so these values are expected to be identified as 

outliers. Regarding groundwater level < -10 m, there are 

fluctuating water levels in the area due to excessive pumping 

causing differences and errors in measurement. 
 

 
Figure 2. Box-plot of the groundwater level 

 

4.2 Modeling and prediction 
  

There are various variogram models that can be used 

for prediction. Table 3 shows three variogram models 

associated with cross-validation estimates of unknown 

groundwater levels in the Gaza Coastal Aquifer. 

Table 3 shows that mean error (ME), mean squared 

error (MSE), and mean standardized squared error (MSSE) 

measures of exponential and Matérn variogram models are 

equal and smaller than for the cubic variogram measures. Thus, 

we select the exponential variogram model due to its simplicity. 

Consequently, the exponential variogram model (with nugget 

0.80643, partial sill 64.5648 and range 13923.93) fitted to the 

empirical variogram was the best choice for modeling the 

spatial structures in the groundwater level data for the Gaza 

Coastal Aquifer. 

 
Table 3. Cross-validation results of groundwater level modeling 

 

Variogram model ME MSE MSSE 

    

Exponential -0.0297546 7.45862 11.3919 

Cubic -0.222327 17.10928 25.98509 
Matérn -0.0297546 7.45862 11.3919 

    

 

Following the selection of the best model, 

interpolated spatial distribution maps of these parameters are 

created. Figure 3 shows the ordinary kriging prediction of 

groundwater level distributed spatially into nine levels from 

very low groundwater levels (red area) to moderate values of 

groundwater level (yellow area), to high values of groundwater 

level (blue area) on the map of the Gaza Strip. The coast of 

Rafah governorate (in the south of the Gaza Strip) has very low 

groundwater levels, while the east of Khan Younis governorate 

has very high groundwater levels. Such predictations will be 

helpful for the decision makers in planning the water resource 

use in the Gaza Strip. The following subsection will detect 

suspected outliers that may affect the predictions. 

 
 

Figure 3. Predicted levels of the groundwater level based on ordinary 
kriging interpolation with an exponential variogram. 

 

4.3 Outlier detection methods 
 

We applied the considered outlier detection methods 

in geostatistical analysis for exponential variogram model. The 

associated cut-off points of the exponential variogram model 

for SIF, AND kriging, and IRF methods are 1175.502, 8.391 

and 16.11, respectively. Table 4 lists the values of SIF, AND 

kriging and IRF for suspected outliers associated with 

measured water levels (WL), where the values that exceed the 

associated cut-off points are listed. 

           SIF has identified five wells as outliers, and the AND 

kriging has identified six wells as outliers, while IRF has 

identified only three wells as outliers. 

There are two wells, numbers 77 and 80, identified as 

outliers by all of the three methods, with groundwater levels 

20.14 and 17.32, respectively. Furthermore, wells 78 and 79 

have been identified as outliers by SIF and kriging. All these 

four wells are located in the east of Khanyounis governorate 

(Fukhary area), where the groundwater level is about 11.8 m 

above sea level and this area is characterized by low saturated 

thickness. Furthermore, there is an artificial recharge of treated 

wastewater to the aquifer that infiltrate about 12,000, and leads 

to groundwater at more than 11 meters above the mean sea level 

(Aish, 2014). 

The minimum water level is -20.00 in Rafah, which 

is a highly populated area with small number of wells: therefore 

the water abstraction from the wells is the greatest. 
 

5. Conclusions  
 

This article has considered the problem of outlier 

detection in univariate geostatistical data. The cut-off points of 

three methods were obtained and their performances were 
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Table 4. The detected outliers in geostatistical analysis 

 

ID Governorate WL SIF Kriging IRF 

      

16 Khan Younis 9.69 - 10.57132 - 

37 Khan Younis 12.56 - 31.96246 30.39043  
40 Rafah -20.00 1196.828 - - 

77 Khan Younis 20.14 1504.688 17.73483 16.86067  

78 Khan Younis 18.88 1380.222 14.76079 - 
79 Khan Younis 18.49 1343.658 13.82338 - 

80 Khan Younis 17.32 1239.321 17.42490 16.56579  
      

 

evaluated via a simulation. The methods were applied to 

groundwater level data for the Gaza coastal aquifer, where 

some outliers were detected and the discussion justified their 

identification.  

Investigation should directed to multivariate outliers 

as well as to applying machine learning methods to outlier 

detection in geostatistical data. 
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